Mobility and noise in n-type semi-metallic Hg$_{1-x}$Cd$_x$Te quantum well for THz detection applications
E. O. Melezhi, J. V. Gumenjuk-Siechevsk, F. F. Sizov, Institute of Semiconductor Physics, Ukraine

Structures: Hg$_{0.3}$Cd$_{0.7}$Te / Hg$_{0.4}$Cd$_{0.6}$Te / Hg$_{0.5}$Cd$_{0.5}$Te quantum wells with semi-metal band scheme and without bands overlap at 77 K.

Why them are perspective for THz detection? High intrinsic concentrations, high mobilities and low resistances at 77 K.

Thus complex numerical modeling of their transport properties and noises is important for further construction of THz receivers.

We considered: inelastic scattering, dispersion law, non-parabolicity, bands mixing, system degeneracy, graphene-like screening.

Methods used: 8x8 k.p method, direct iterative solution of Boltzmann transport equation.

Energy spectra of QW with $x=0.06$ on well width, L. Increase of L leads to transition from semi-conducting to semi-metallic state.

Role of different scattering mechanisms. Considered mechanisms: holes, charged impurities (CI), interface, optical (LO) and acoustic phonons. The QW width is 20 nm. $N_v=10^{15}$ cm$^{-3}$. $T=77K$. LO - scattering is suppressed due to dynamical screening strengthening.

Calculated electron mobility. Well width = 20 nm. Charged impurities concentration in QW is 10^{15} cm$^{-3}$.

Change of the electron concentration could be achieved by delta-doping of barriers or by applying the top-gate bias voltage.

High electron mobility can be obtained at high electron concentration in the QW, which decreases holes concentration and enhances 2DEG screening.

Calculated thermal noise. Channel thickness = 20 nm.

To obtain the optimal operation characteristics of a semimetal MCT QW channel, a high electron concentration in the QW should be provided, channel chemical composition x should be close to the band structure inversion point, and charged impurities concentration should not exceed 10^{15} cm$^{-3}$.

Conclusions. We have found, that:

- In semi-metal HgCdTe QW channel of HEB or HEMT the channel resistance varies by more than two orders of magnitude depending on the electron concentration. Such a dependence could provide high volt-watt sensitivity of the hot-electron bolometer, as small variations in the gate voltage should result in strong changes of the bolometer resistance. A high dynamical tunability makes up another benefit of the considered system for the THz detection.
- To obtain the optimal operation characteristics of a semimetal MCT QW channel for THz detectors, one should provide a high electron concentration in the QW, and adjust the channel chemical composition x to be close to the band structure inversion point (just below the inversion point, to avoid activating an additional mechanism of scattering on the effective mass fluctuations).
- Semimetal HgCdTe QWs used as a channel for THz hot-electron bolometer at the liquid nitrogen temperature is able to provide high operation speed combined with high sensitivity and low noise.
- HgCdTe THz HEB advantages compared to the graphene HEB: higher mobility, lower noise, higher operational speed, more efficient coupling to planar antennas in THz range detector applications.