Topological pumping blockade as a signature of FQHE parafermions

Krylo Snizhko, Yanos L. Gersasimenko, and Yuval Gefen

1 Weizmann Institute of Science, Rehovot, Israel
2 Instituut–Lorentz, Universiteit Leiden, The Netherlands

1. Parafermions in FQHE

\[\hat{a}_i \equiv e^{i \nu (\hat{m}_i + \hat{n}_i)}; \quad \hat{a}_i \hat{a}_i^{\dagger} = 1; \quad \hat{a}_i \hat{a}_j = e^{i \nu \text{sgn}([i-j])} \hat{a}_j \hat{a}_i \]

\[\langle \hat{r}_i \rangle \hat{a}_i \hat{a}_i^{\dagger} \hat{r}_j \hat{r}_j^{\dagger} = e^{i \nu (\hat{r}_i^{\dagger} \hat{r}_j^{\dagger} + \hat{r}_j \hat{r}_i)} \]

\[\Rightarrow \hat{a}_i \langle r_i \rangle \hat{a}_j^{\dagger} \sim r + \text{sgn}(i-j) \text{sgn}(j-i) \]

\[v = \frac{1}{2p+1} \]

Fractional Quantum Hall Effect state

\[\nu = \frac{1}{2p+1} \]

FQHE state

Parafermions (in domain walls)

Superconductor

4. Lifting the blockade

Unblocking does occur for \(\hat{H}_{\text{tunneling}} = \hat{H}_{\text{tun}} \) or \(\hat{H}_{\text{tunneling}} + \hat{H}_{\text{tun}} \).

For \(l, t \) and \(l', t' \), \(l, t \) or \(l', t' \) are of type \(l_2, l_3 \) or \(l_4 \).

Protocol:

| \(r \neq r_B \) or \(r = r_B \) or \(r = r_B \) or \(r = r_B \) | \(|\psi\rangle = |r_B\rangle \rangle_{AD} \) or \(|\Psi\rangle = \sum_{r, r_B} \langle r | r_B \rangle \rangle_{AD} \)

Outcome \((\nu = \frac{1}{2} r_B = 0)\):

\[\begin{array}{c} r = 0 \ \text{or} \ r = 5 \end{array} \]

| \(r = 1 \) or \(r = 2 \) or \(r = 3 \) or \(r = 4 \) or \(r = 5 \) or \(r = 6 \) | \(\text{possible topologies for unblocking AD} \)

Conclusion

As the outcome of our work, we built protocols which allow to probe the crucial features of parafermions – nonlocality and statistics.

We calculated the average pumping current and its noise. In each protocol, they take specific values determined by the filling factor \(\nu \) and the topology of a setup.

Being nonlocal, the proposed measurements are robust to local effects, e.g., Andreev bound states, that may mimic parafermions in other experiments.