We investigated the influence of magnetic state of NdFe$_3$(BO$_3$)$_4$ on the permittivity ε (magnetocapacitance (MC)) and the piezomodule ε (magnetopiezoelectric effect (MPE)).

The main results are:

1. Below the Neel temperature (~32K) permittivity ε_{xx} starts to increase almost linearly. At $H=0$ the growth of ε turns to a slight decrease at $T_{cr}=13\pm 20$K(Fig.1). We associate T_{cr} with the transition to a helicoid phase.
2. Piezomodulus ε_{xx} below T_{cr} goes down at first, but than starts to grow at T_{cr} (Fig.2).
3. In the external magnetic field H_{cr} applied in basal plane, the helical phase transformed to a “spin-flop” phase by means of the first-order phase transition (Fig.3). The H_{cr} value doesn’t depend on the magnetic field direction (Fig.4). At Fig.5 it is presented the H-T diagram.

Fig.1. Temperature dependencies of dielectrical permittivity ε at different external magnetic fields H.

Fig.2. Temperature dependencies of piezomodulus.

Fig.3. Field dependencies of dielectrical permittivity ε in different angles φ ($T=1.7$K). At $H=1$T the helical phase transfers to a “spin-flop” phase.

Fig.4. Angle dependence of H_{cr} between x-y axes. Opened circles - field up, filled down.

Fig.5. H-T diagram for NdFe$_3$(BO$_3$)$_4$. Opened circles - field up, filled -down.

Fig.6. The linear dependence of ε from H^2.

•Phenomenological description can be given in frame of model, used in [1]. It is suggested that Nd ions are in the effective field $H_{eff}=\pm H_{ex}+H$, where $\pm H_{ex}$ exchange fields created by iron sublattices.

•We used thermodynamics potential like in [2]. For the related variations of ε at $H \ll H_{ex}$ it was obtained:

$$\frac{\delta \varepsilon}{\varepsilon} \approx \frac{4\pi}{\chi \varepsilon} \left(a^2 - \frac{a_{Nd}}{a} - 6 \frac{H_{ex}}{\chi} + \frac{3}{2} \frac{\chi_{Nd}}{\chi} + \frac{1}{H^2} \right).$$

•Here a, χ - magnetoelctrical coefficients, X_{Fe}, X_{Nd} - partial susceptibilities. The main features of these equations are the linear dependencies on H^2 shifted relative to the origin in the region of negative ordinates. These features are well confirmed experimentally (Fig.6). Using the known from the literature data on $H_{ex} (7.5 \pm 0.5$ T), $(X_{Fe}+X_{Nd})(1.38 \cdot 10^{-5}$ emu/cm3) and $\varepsilon (\varepsilon_{ex}=15)$ at $T=1.7$K it was found that $a_{ex}+a_{Nd} = 450$ μC/m2. Expected value of the electrical polarization at $H_{ex} \approx 225$ μC/m2, that is comparable with the measured one [1]. We notice also that the magnetoelctrical coefficients have different signs and their ratio is $|a_{ex}/a_{Nd}|=0.2$.

